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STEREOCHEMICAL STUDIES. XXXIV. * QUANTITATIVE 
DESCRIPTION OF RING PUCKERING VIA TORSIONAL ANGLES. 

THE CASE OF SIX-MEMBERED RINGS 

N. S. ZEFIROV,j' V. A. PALYULIN AND E. E. DASHEVSKAYA 
Department of Chemistry, Moscow State University, Moscow I19899 USSR 

The quantitative description of ring puckering suggested by the authors is compared with that of Cremer and Pople. 
The applicability of both methods i s  discussed for the case of six-membered rings with the use of model calculations 
simulating various ring distortions and with the analysis and comparison of puckering parameters computed on the 
basis of x-ray data for 40 six-membered rings in different cyclic structures. The 2 N  times reduction of the field of varia- 
tion of  puckering parameters for the N-membered ring is suggested and the algorithm for the renumbering of the ring 
atoms for this purpose is  described for six-membered rings. 

INTRODUCTION 

The reliable experimental and computational methods 
accessible nowadays provide exhaustive and accurate in- 
formation on the geometries of a great number of cyclic 
molecules. In this connection a problem arises: how to 
convert the long tables of atomic coordinates into a 
clear notion and brief quantitative description of the 
rings shape in molecules. The most usual description of 
the ring shapes is based on their intuitive comparison 
with some reference forms such as chair, boat or half- 
boat. This pictorial characterization is supported by 
some metric parameters, such as deviations of the tor- 
sional angles from the standard values or displacements 
of some atoms from a particular plane. 

A number of quantitative methods are available for 
the description of the spatial forms of cyclic molecules, 
and each has its advantages and shortcomings. In this 
paper we describe the method suggested previously by 
the authors (for short communications see Refs 1 and 2)  
and compare it with the now commonly used Cremer 
and Pople (CP) m e t h ~ d . ~  

The need for a general quantitative description of ring 
forms was realized long ago and a number of attempts 
have been made with the use of different levels of 
sophistication. Kilpatrick et in their pioneering 
work in 1947, considered the conformational inter- 
conversion in the cyclopentane ring in terms of 'pseudo- 
rotation of puckering.' According to this approach, any 
conformation of cyclopentane can be described by two 

parameters: the amplitude and phase angle of pseudo- 
rotation, both obtained from the out-of-plane 
displacements of five carbon atoms. Later the descrip- 
tion of pseudo-rotation on the basis of endocyclic tor- 
sional angles was undertaken for certain types of cycles: 
f i ~ e - r n e m b e r e d , ~ - ~  six-membered8-" and seven- 
membered. ~ l 4  Attempts have also been made to use 
bond angles for the same purpose. l 5 , l 6  While all possi- 
ble conformations of the five-membered ring can be 
described in terms of pseudo-rotation, in the case of 
larger rings there are conformations which are beyond 
the scope of this description, such as the most frequent 
'chair' form of cyclohexane and all the intermediate 
forms between chair and boat, the twist-boat family. 
These forms were described by ring puckering coor- 
dinates with the use of the out-of-plane displacements 
of ring atoms, and such descriptions allowed them to be 
depicted schematically on a spherical surface with chair 
forms on the poles and pseudo-rotating boat and 
twist-boat forms on the equator. 

It should be noted that the above-mentioned studies 
did not contain accurate and general procedures for 
reducing the ring atomic Cartesian coordinates to a set 
of puckering parameters. Such a procedure was worked 
out for the first time in 1975 by Cremer and Pople, who 
introduced 'the general definition of ring puckering 
coordinates' as a generalization of previous approaches. 
According to  the C P  method, for a ring of size N ,  the 
set of N - 3 puckering coordinates (amplitudes and 
phase angles deduced from the deviations z, of the ring 
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atoms from the specially constructed ‘mean’ plane) 
leads to the description of the whole spectrum of possi- 
ble conformations. In particular for the six-membered 
rings the C P  method operates with three variable coor- 
dinates and provides a description of ring shape with the 
use of the polar coordinate system in terms of total 
puckering amplitude Q, polar angle 0”’ and phase angle 
4 2 .  The essential advantage which distinguishes the 
C P  method from the earlier treatments is the absence 
of approximations, although its applicability was 
questioned. 1 8 , 1 y  The C P  method is currently widely used 
for the analysis of puckered ring and for the 
unambiguous definition of ring substituent positions. ’’ 
Another kind of puckering parameter, as suggested by 
Altona and Sundaralingam,’ is based on the endocyclic 
torsional angles p,. The C P  puckering parameters can 
be connected, as with the values of p,, 
where the approximate relationships between p, on the 
one hand, and the C P  and Altona-Sundaralingam 
puckering parameters on the other, were derived. This 
approach was based on the Fourier transform of the 
geometrical parameters“ and appeared to be fruitful in  
the analysis of conformations of seven-membered rings 
with torsional angles as such parameters. 2y For the same 
purpose the general relationship between the torsional 
angles in a seven-membered ring was applied. ‘ O  The fact 
that the geometry of the five membered rings was 
described using the assumption of constant distances 
between the atoms and the mass centre of the ring3’ also 
should be mentioned. 

As we pointed out previously, I the C P  method leads to 
a re-definition of the notion of ‘puckering’ based on the 
angular parameters which seem to be generally accepted 
in stereochemistry.32 To elucidate the essence of the 
problem, let us consider the chair conformation of 
1,4-oxathiane3’ (shown in Figure 1 )  with the aim of 
determining which part of it is more flattened and which 
part is more puckered. The following criteria which are 
usually applied for the description of the ring forms can 

C 

Figure 1 .  Geometry of 1 ,.?-oxathiane ring: (a) general view of 
the ring; (b) torsional angles; (c) z-coordinates in the CP 

method 

be used in this case. The first criterion is based on th: 
comparison 2f the values of dihedral angles w I  = 124 
and ~2 = 133 (Figure la), and this clearly shows that 
the sulphur apex of the oxathiane ring is flattened in 
comparison with the oxygen apex. Evidently this 
criterion can be applied only to the six-membered rings 
with atoms 2, 3, 5 and 6 lying in one plane. The second 
and more general criterion is based on the comparative 
analysis of the pairs of the endocyclic torsional angles 
at each apex.32 If the absolute value of the difference 
between the torsional angles (each taken with its sign”) 
at one apex is greater than another, the former fragment 
is considered to be more puckered than the latter. 
According to this criterion, in the case of 1,4-oxathiane 
(for torsional angles see Figure Ib), the sulphur- 
containing fragment is flattened noticeably compared 
with the C-0-C fragment. Thus, both criteria used in 
stereochemistry lead to the same conclusion. 

In contrast, the C P  method leads to the opposite con- 
clusion, namely that the C P  parameters (Q = 0.62, 
0‘’ = 5 . 5 O ,  42 = 180”) correspond to flattening of the 
oxygen apex compared with the sulphur apex (for nor- 
mal deviations of atoms from the mean plane, see 
Figure Ic). A similar situation can take place in the 
metal-containing rings. In Figure 2b, ring A in the com- 
plex compound pictured in Figoure 2a35 is represented. 
The dihedral angles WI = 119 and w2 = 137” show 
significant flattening of the Cu-containing apex. Con- 
sideration of the torsional angles which are shown in 
Figure 2c leads to the same conclusion. In spite of this, 
the C P  m5thod (for yhich the parameters are Q = 0.63, 
0‘’ = 1.5 , 4 2  = 189 ) shows an almost ideal chair with 
a slightly flattened C-C-C apex. 

Another problem arises when the puckerings of two 
equilateral rings are compared, suchoas the chair forms 
of cyclohexane (bond length o1 .535 A 3 6 )  and cyclohex- 
asilane (bondo length 2.342 A ”). The dihedral angles 
W I  = w2 = 130 and the endocyclic torsional angles of 
+-55’ for cyclohexane show that its puckering is close 

C 

Figure2. (a) Complex compound containing (b) the ring A 
(C-8-C-2-N-I-Cu-N-ZA-C-5A); (c) torsional angle5 i n  

ring A 
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to  that of cyclohexasilane (wI = w2 = 127.5”; torsional 
angles of + 5 8 ” ) .  However, the total puckering C P  
amplitudes Q which characterize the degree of pucker- 
ing of the ring are 0.565 and 0.916 for cyclohexane and 
cyclohexasilane, respectively, indicating pronounced 
puckering for the latter ring in comparison with 
cyclohexane. It is also possible to envisage a situation 
where the less puckered, from the stereochemical view- 
point, equilateral ring has larger bond lengths than a 
more puckered ring. The C P  method in this case will 
give a larger value for the total puckering amplitude for 
the ring which in fact is less puckered. 

Thus the examples considered demonstrate that C P  
method can, in certain cases, give results in contradic- 
tion with the conventional definition of puckering and 
it introduces a new definition of this notion. The origin 
of the aforementioned discrepancies is rooted in the 
essence of the CP method. The C P  description of 
puckering is based on the displacements of atoms from 
the ‘mean’ plane and hence any increase in 
z-coordinates caused both by a real angular distortion 
of the ring and by non-equality of bond lengths 
automatically leads to an increase in the resulting quan- 
titative puckering characteristics. Thus, for the oxa- 
thiane cycle the difference in C-0 and C-S bond 
lengths is large enough not only to disguise the angular 
distortions but even to  overbalance them. The second 
example demonstrates that the total puckering 
amplitude Q takes into account not only the degree of 
puckering of the ring but also its space dimensions. 
Hence the comparison of the shapes of two cycles with 
different bond lengths is impossible by the direct applic- 
ation of the C P  puckering analysis exclusively. 

Attempts to supplement the C P  method with some 
additional ‘normalization’ procedure to  avoid the pro- 
nounced dependence of the C P  parameters on bond 
lengths have failed and thus the necessity for another 
approach to  the problem was recognized. 

PUCKERING PARAMETERS BASED ON 
TORSIONAL ANGLES 

In a previous paper I we suggested the use of the endo- 
cyclic torsional angles pJ as a base for the C P  calcula- 
tional procedure. Thus, instead of the normal devia- 
tions z, from the mean plane, the values of sin(pJ/2) 
were used for calculations of the puckering amplitudes 
and phase angles which we denote s,,, and $,,, (to 
distinguish them from the corresponding CP denotions 
y,,, and @,,,, respectively3). Equations (1)-(3), which 
correspond to equations (12)-(14) in Ref. 3 serve for the 
calculation of s,,, and $,,, for the N-membered ring, 
equation (3) being necessary only for even-numbered 
rings. 

s,!~ cos +,,, = - ( 2 1 ~ ) ’ ”  C sin(pJ/2)sin [,rn(2j + I ) / N ]  

( 1 )  

\ 

, = I  

N 

slrr sin $,,, = - ( 2 / ~ )  ”* C sin(p;/2)cos [ m i  (2 j  + I ) / N I  

(2) 

(3) 

;= 1 

N 

;= 1 
s,v/2 = N-”~ C sin(p;/2)cos [gu - 111 

rn = 2, ..., M; M =  ENT[ (N- 1)/2] 

where 

(4) 
As a torsional angle p1 the angle 1-2-3-4 is chosen, as 
p2 the angle 2-3-4-5, etc. 

In the case of six-membered rings, rn = 2 and any con- 
formation is described by three parameters s ~ ,  $2, s3 or, 
in terms of the polar coordinate system [equations (5) 
and (6)], by the polar and phase angles 0 and $2 and the 
total puckering amplitude S: 

( 5 )  s2 = S sin 0 

s3 = s cos 0 (6) 
If only polar and phase angles 0 and $2 are considered, 
any conformation of the six-membered ring can be 
represented by a point on the surface of the sphere 
shown in Figure 3a, similar to  the C P  sphere. Points on 
this sphere which correspond to  the symmetrical confor- 
mations coincide exactly with those on the C P  sphere, 
while other points are usually shifted. On the poles of 
both spheres (0 = 0, 180’) the chair conformations 
are located, and on the equators the boat forms 
with $ ~ = 6 0 ”  x t  and the twist-boat forms with 
$ 2  = 60 x n + 30 are located (n  = 0, 1, ..., 5 ) .  For the 
equator of the sphere, see Figure 3b. 

It should be noted that equations ( 1 )  and (2) are 
slightly different from those suggested in our previous 
work. I We have found it reasonable to modify the first 
version of our method (ZP) so that the points cor- 
responding to  the ‘canonical’ conformations (such as 
boat, or chair or twist-boat in six-membered rings) 
would be the same as on the C P  sphere. The modified 
version based on equations (1)-(4) will be referred to 
here as ZPD. The phase angles $,,, in the ZPD method 
are connected with $Zp by 

$,,, = $2’ - 3 ~ m /  N - ~ / 2  

The schematic representation of the ring forms on the 
surface of the sphere is of great use for the analysis of 
the ring distortions. Values of polar and phase angles 
for a given distorted ring reflect the distance between the 
point corresponding to this ring and the points of the 
canonical conformations (such as chair, boat or 
twist-boat) on the surface of the sphere. For example, 
some displacement of the point from tbe pole (0 = 0) in 
the direction of the boat with $2 = 0 corresponds to 
flattening of the part of the cycle adjacent to fourth 
atom with respect to  that adjacent to  the first atom and 
vice versa for the displacementoof the point in the direc- 
tion of the boat with $2 = 180 . For the points located 
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close to the equator, the distance from the adjacent boat 
form in the direction of the twist-boat describes the 
degree of twisting of the corresponding cycles. 

For the ZPD method the values of sin(p,/2) involved 
in the computation of puckering parameters satisfy 
equations (5)-(7) for z-coordinates in Ref. 3 only 
approximately and the first amplitudes SO and sI [which 
can be calculated using equations ( 1 )  and (2) with 
rn = 0, 1 1 ,  although usually very small, may be different 
from zero. Thus the total puckering amplitude S =  
(C:=, sf,,) ”’ can be slightly different from the value of 
[ X,”= I sin2(p,/2)J I ”  in some cases and torsional angles 

I 

a 

5 2  

j L Rl 

b 

Figure 3 .  (a) ZPD puckering parameters for the six-membered 
ring in a polar coordinate system; (b) the six-membered ring 

forms on the equator 

pJ can be generated from the values of N - 3 puckering 
parameters s2, $2, s3, ..., also approximately using the 
following equation: 

PjcaIc .  = 
M 

- ( 2 / ~ ) ’ / ‘  C s,?] sin[$,,1 + x m ~ j +  I)/NI 
111 = 2 

S N / 2  cos2(TN/2)cos [ T ( j  - I ) ]  (7) I + N-1/2 

The deviation of the thus calculated values of tor- 
sional angles 9,ralc. from the initial values p, can be 
estimated with the parameter U :  

For five- and six-Ilcfembered rings the u values usually do 
not exceed 2-3 and in most cases are within 
experimental error, whereas for medium-sized rings 
such consistency is not always observed. The ZPD 
method describes well the conformation and distortions 
of cyclic molecules when u does not exceed 3-5O. In the 
case of large u values, ZPD puckering parameters 
should be analysed with caution, although even here the 
ZPD method in most cases describes the puckering of 
the ring correctly. 

If one returns to the example of 1,4-oxathiane con- 
sidered above, the Z!D puckering parameters 
(S = 1.20,B = 4.6”,  $2 = 0 ) show that the oxygen apex 
is more puckered than the sulphur apex, which is in 
complete agreement with the stereochemical criteria. 
The ZPD parameters for ring A in the complex com- 
pound in Figure 2a (S = 1.19, I9 = 6 - 6 ” ,  $2 = 359.4”) 
indicate that the Cu apex is flattened, in agreement with 
conclusions obtained from consideration of dihedral 
and torsional angles. 

In these cases, a significant difference between the two 
methods in the description of puckering is observed. 
How often can such contradictions be found? To 
answer this question and, in general, to evaluate the ap- 
plicability of  each method, comparisons of the Z P D  and 
CP parameters (1) for the model cycles subjected to  
some geometrical distortions and (2) for a large number 
of the rings in cyclic molecules were made. 

MODEL CALCULATIONS 

Consideration of the model rings leads to the possibility 
of separating the geometrical factors which have an 
effect on the ring form and which are present in one 
combination or another in a real ring. For example, 
substitution of one of the carbon atoms in cyclohexane 
by a heteroatom X results in a change in the lengths of 
the two adjacent bonds and magnitudes of the bond 
angles, especially the CXC angle. The model calcula- 
tions allow the effect of such geometrical distortions on 
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the C P  and ZPD puckering parameters to be con- 
sidered. Three canonical conformations of cyclohexane 
(chair, boat and twist-boat) were taken as the base for 
model calculations, bond lengths of 1.535 A and bond 
angles of 1 1  1 *4" being ,used for the reference undis- 
torted ring. 36 The results of two versions of the model 
calculations are considered in this section. 

1. All the endocyclic torsional angles were kept con- 
stant (? 55"  forochair, 0, + 55, - 55' for boat and 
60, -30, -30 for the twist-boat form). Two 
neighbouring bonds 'C-X' were lengthened or 
shortenedsimultaneously, with the constant values 
of 1.535 A for the other ('C-C') bonds, and the 
values of the bond angles were obtained from the 
optimization procedure. Although this model is 
artificial (as the torsional angles are the most 
changeable among the inner geometrical 
parameters), it allows one to retain equal pucker- 
ing of opposite apices according to the criterion 
based on torsional angles. The ZPD parameters 
are in agreement with that criterion while the C P  
parameters Q and 0'' depicted inQFigure 4 as a 
function of A1 (AZ= fc-x - 1-535 A) are strongly 
dependent on A/. The comparison of the dihedral 
angles 612/2356 and 345/2356 shows the slow in- 
crease in their difference with the lengthening of 
the 'C-X' bonds. 

2. The model ring with the fixed dihedral angles 
612/2356 ( w I )  and 345/2356 (wz) ,  si@lar to WI and 
w2 in Figure la ,  with wI = wz = 130 , was studied. 
The coordinates of five 'carbon' atoms 2, ..., 6 
were fixed while 116 and 112 were changed 
simultaneously so that the 'heteroatom' X remain- 
ed within the same plane 612 as in a regular chair 

CHAIR 

Figure4. Dependence of Q and 0" for the chair and boat 
forms of model rings on AI at constant values of all endocyclic 

torsional angles 

300 t 

Figure 5. Dependence of the ZPD and CP polar angles 0 and 
0' on A /  for the model six-membered rings with fixed values 

of dihedral angles w ,  and WZ. 

or boat form of cyclohexane. Figure 5 represents 
the dependence of the polar angles 0'' and 8 on A l  
for the chair and boat conformations and shows 
that the CP puckering parameters are extremely 
sensitive to such types of distortions, in contradic- 
tion with the criterion based on dihedral angles W~ 

and w2. Analogous tendencies were found for total 
puckering amplitudes. 

Other versions of the model calculations lead to 
similar conclusions. 

REDUCTION O F  T H E  PUCKERING 
PARAMETERS INTO MINIMAL SUFFICIENT 

INTERVALS 

In practical applications of puckering parameters, a 
specific feature of all methods becomes evident. Let us 
consider again the oxathiane cycle (Figure la) and 
change the position of the first atom in it. In Table 1 the 
ZPD parameters for each numbering of the atoms in the 
ring are given. It can be seen that the total puckering 
amplitude S is the same, whereas the polar and phase 
angles 0 and $2 change their values from one numbering 
to  another. The same dependence also exists for the C P  

Table 1 .  Effect of choice of the first atom 
in the oxathiane ring (Fig. 1, see Ref. 33) 

on the puckering parameters 0, $2 

Atomic numbering 0 $2 

1-2-3-4-5-6 4.6 0 
2-3-4-5-6-1 175.4 120 
3-4-5-6-1-2 4.6 240 
4-5-6-1-2-3 175.4 0 
5-6-1-2-3-4 4 - 6  120 
6-1-2-3-4-5 175.4 240 
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method. Hence the puckering parameters in both 
methods depend on the atomic numbering, so for the 
single conformation there is a number (4N for an 
N-membered ring, as will be shown in this section) of 
sets of parameters, which makes i t  difficult to compare 
the conformations of different rings. 

Comparison of the puckering of numerous rings led 
to a problem of the reduction of the field of variation 
of the angular puckering parameters, i.e. phase angles 
and polar angle for even-menibered rings. As will be 
shown below, such reduction can be achieved it' the ring 
atoms are numbered in some special way unique to each 
cycle. Both the CP and ZPD methods lack a standard 
procedure for numbering of the ring atoms, and this 
ambiguity leads to the existence of 2 N  different sets of 
puckering parameters for a single N-membered ring, 
each set for a certain atomic numbering. The notion of 
atomic numbering used here includes both the choice of 
the first atom and the direction in which the numbers in- 
crease in the ring (either clockwise or counterclockwise). 
The numbering procedure proposed by Boeyens3* is 
based on accepted nomenclature rules and, although it 
avoids ambiguity, it also leads to a sparseness of the 
points on the sphere. On the other hand, when a similar 
numbering procedurej9 was applied to a special type of 
ring (pyranoid rings), i t  resulted in a concentration of 
the points in a certain part of the sphere. The problem 
is to achieve a similar concentration of points for rings 
of general structure. 

Here we describe a method for the evaluation of a 
unique atomic numbering for any N-membered ring 
which allows one to obtain the angular puckering 
parameters for both ZPD and C P  methods, $,?), $,,,, and 
in the case of even rings, 0,  O C p ,  in a minimal sufficient 
part V of their field of variation. For the case of six- 
membered rings, as will be shown below, area Vin most 
cases occupies 1/24th of the whole two-dimensional field 
of  4 2 ,  OCP(dz E [0, 2 a ] ,  e C P <  [0, a ] )  for the C P  
method or $2, 0 ( $ 2  c [0, 2 ~ 1 ,  0 E [0 ,  a] ) for the ZPD 
method. For the sake of convenience here we shall con- 
sider only ZPD puckering parameters and imply that the 
same conclusions can be drawn for the C P  method. 

Suppose that the atoms of the N-membered ring are 
numbered in some way, 1-2-3-...- N, and the pucker- 
ing parameters $!? and 0'" are obtained for this initial 
numbering. Another set of puckering parameters will 
be obtained for another atomic numbering. Each 
renumbering o f  ring atoms can be represented by 
permutation 

p =  t2 ::: : ) 1  

which means that number 1 goes to the atom initially 
numbered k l ,  number 2 to k2 etc. Obviously, only those 
permutations of  the numbers of the ring atoms which d o  
not change the succession of the atoms composing the 
ring are permissible in our case. 

It will be shown below that the permissible permuta- 
tions of the atomic numbers of the N-membered ring 
form the group which we denote P,% of the order 2N. 
The generators of the group P S  are two permutations: 

1 2 3 ... N )  and p , =  (1 2 3 ... N) 
2 3 4 ... 1 1 N N - 1  ... 2 

P,' = 

Now we consider in detail these two permutations and 
the resulting change in the puckering parameters. 

1 .  The cyclic permutation P,', i.e. shift of the atomic 

leads to a rotation of the C P  Cartesian coordinate 
system about the z-axis. With the use of equations 
(1)-(3) for the ZPD method [and equations 
(12)-(14) in Ref. 3 for the C P  method], it can be 
shown that the phase angles $!:) corresponding 
to a new atomic numbering are connected with 
the initial phase angles $,(:I by the relationships: 
$At' = $A? + 2 m ? / N  [for tn see equation (4)). 
Permutation P,! has no effect on the puckering 
amplitudes s , ) ~ ,  the only exception being for the 
amplitude s . v / ~  for even-membered rings: 
sj\!,h = -s%. A change in the sign of S.Y/Z results 
in a change in the polar angle value: 0"' = a - 0'"'. 
I t  is obvious that the recurring application of the 
permutation P,! leads to the new set of puckering 
parameters, each set being connected with the 
previous one in the same way. Hence there are N 
permutations which are the degrees of P,! and 
compose the cyclic group of order N: 

number by unity (1-2-3-.,.-N- 2-3-4-...- 1) 

{ P!.) = P;, P: )..., P: .,..., P> = E. 

The effect of P{. on the atomic numbering leads to 
new phase angles: $!/) = $!? + 27rn!j/ N. For even- 
membered rings 

0'") for even, 
T - OC0) for j odd 

",2 - ( -  1 ) ' s w ;  0"' - s ( J )  - 

In the case of a six-membered ring with /n  = 2, 
$4') = $4"' + 2.irj/3. Figure 6a illustrates the point\ 
corresponding to six possible atomic numberings 
of a six-membered ring which are obtained from 
the initial one (point 0) by application of Pi- 
permutations ( j  = 1,2, ..., 5 ) .  

2. The second generator of the group P,, i \  
permuta!ion P, corresponding to a change in the 
direction of numbering (1-2-3-...-N- I -  N 
( N -  1)-...-2) . I t  can be shown that the new 
phase angles are connected with the initial 
angles by the relationship $,;, = - $,,( + a; further, 
for even rings S<,,Z = -s. \ ,2 and 0 '  = B - 0. The 
puckering amplitudes s,,, (m # N/2) d o  not 
change. Figure 6b serves to visualix the effect o f  
P, on the position of the initial point (1) in the case 
of six-membered ring on the polar projection of 
the spherical surface. The resulting point (2) has 
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Figure 7. The minimal sufficient region V on the sphere 

b 

Figure 6. Effect of permutations (a) fi, and (b) P ,  on the 
position of the point on the polar projection of thc sphere 

the coordinates $1=  n- $2 and 8 '  = r-8. If 
multiplication of permutations is defined as the 
successive application o f  P, and Pi, then all the 
products P<.P, conlpose the right co-set of the 
cyclic subgroup { P:. with respect to permutation 
P,. It can be proved easily that (P.l.1 and its right 
co-set compose the group PN of the order 2 N  of 
permissible permutations of the atomic numbers 
for the N-membered ring. 

In the case of six-membered rings, PS contains 12 
permutations which can be used for the dissection of the 
spherical surface into I 2  equivalent regions, each of 
them being sufficient for the description of puckering of 
the whole variety of six-membered rings. 

The additional possibility of reducing these two- 
dimensional sufficient regions arises if the substance 
exists in two enantiomeric forms. Usually the 
coordinates from the x-ray data on racemic crystal 
structures are given arbitrarily for one of two 
enantiomers contained in a unit cell. Taking into 
account that the Cartesian coordinates of two 

enantiomeric forms are connected by the inversion i 
operation, we may use it in addition to the permutations 
to  obtain the extra two-fold reduction of the field of 
variation of the angular puckering parameters. 

For the C P  method, inversion i results in a change 
of  the sign of all coordinates and for the ZPD one of 
the torsional angles and thus of the parameters 
pJ = sin(cp,/2). Puckering parameters of a six-membered 
ring change in the following way: 

$i = $2 + a; 8'  = K - 8(ZPD); 4; = 42 + 7; 

(ecp 1' = - ocP(cp) .  

This means that inversion of the coordinates of the ring 
atoms leads to an inversion of the point on the sphere 
with respect to its origin. 

Hence the minimal sufficient region V for six- 
membered rings (shown by hatching in Figure 7) makes 
1/24th part of the whole field of variation of the angular 
puckering parameters i f  inversion is used. Figure 8 
shows the whole two-dimensional area of 8, $2 (ZPD) 
or O C p ,  $2  (CP) divided into 24 equivalent parts. I n  
each region the operations are presented which serve 
to transform the polar and phase angles into the 
chosen 'canonical' intervals, which are: 6 c [0, n /2] ,  

It should be mentioned that the necessity for 
inversion i to reduce the puckering parameters in the 
canonical region can serve for the distinction of rings 
with coinciding and non-coinciding chirality. 

To obtain the puckering parameters in a standard 
region, the procedure is as follows: (i) choice of an 
arbitrary atomic numbering; (ii) usual computation of 
puckering parameters according to the ZPD (CP) 
procedure; (iii) determination with the use of Figure 8 
of the operations (permutations and/or inversion) 
leading to  a required atomic numbering which provides 
the values of the phase and polar angles in a standard 
region; (iv) then there are two possibilities for obtaining 
the new values of puckering parameters which belong to 

[0, n/6] (Figure 8). 
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Figure 8. The two-dimensional area of 8,  GZ for the ZPD 
method divided into equivalent parts. In each part the shown 

operation which transforms i t  into the 'canonical' area ( E )  is 

a standard region: (a) with the use of the rules given 
above or (b) by the repeated ZPD (or C P  accordingly) 
computation for the new atomic numbering (and/or for 
the opposite directions of the axes). This algorithm can 
be easily realized with a computer program. 

Use of the puckering parameters in a canonical region 
opens wide possibilities for comparison of the 
conformations of various rings. 

APPLICATION OF THE METHOD 

The ZPD and C P  puckering parameters calculated for 
40 six-membered rings on the basis of x-ray data for 
arbitrary chosen compounds 1-2020,40-56 shown in 
Figure 9 are summarized in Table 2. The atomic 
numbering for each ring was obtained according to the 
procedure described above to provide all points in the 
canonical region for ZPD parameters. Thus the number- 
ing is such that the maximum flattening of the ring is 
always around the apex 4 and the maximum puckering 
around apex 1.  As can be seen from Table 2, the 

parameter u has satisfactory values for the rings con- 
sidered (except for 16A, which in fact consists of fused 
three- and five-membered rings). 

Let us analyse the puckering of the rings in structures 
1-20. Even a brief look at the puckering parameters in 
Table 2 allows one to evaluate the ring conformation in 
most cases. For example, the rings 10B, I lC,  17A, 17D 
and 19A are almost ideal chairs (0 from 0-  1 to  0.9"). 
The rings 3, 4, 11A, 17B, MA, l8D, 19B, 19D and 20A 
adopt a conformation close to a chair, although in these 
cases the fragment of the ring containing the fourth 
atom is slightly flattened and most of the rings arc 
twisted to some extent (for a non-twisted ring !J2 = O " ,  
whereas for a ring twisted to a maximum extent for a 
given 0 value $2 = 30"). Such flattening is more signific- 
ant for the rings 1, 9A, I lB,  16B, 18B and 19C (0 from 
7.7 to 1 6 * 7 O ) ,  and of these 9A is considerably twisted. 
The rings 2, 8 and 20B have nearly a half-chair confor- 
mation, ring 5 is close to a half-boat and rings 9B and 
10A are intermediate between half-chair and half-boat . 
The rings 7, 12, 13, 14A, 14B, lSA-D, 17C and 18C are 

1 2 

6 5 

cH3FTH3 0 

7 8 
Figure 9. Structures 1-20 (for references see Table 2) 
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2 
N 

ph$ OTs 

9 A 2-3-4-5-6-1 10 A 5-6-1-2-3-4 
B 2-1-7-8-13-3 

B 8-9-10-4-5-7 

11 A 5-6-7-8-9-10 
B 14-13-12-11-9-8 
C 5-10-1-2-3-4 

12 13 

14 A 11-6-7-8-9-10 
B 5-4-3-2-7-6 

4 e,; 2 12 

3 

15 A 2-7-6-5-4-3 16 A 3-4-5-9-1-2 
B 11-10-9-8-12-13 B 9-1-8-7-6-5 
C 11-6-7-8-12-13 
D 8-9-10-11-6-7 

,& 12 1. 

3 1.3 

A 6-1-2-3-4-5 C 8-7-17-16-11-9 
B 8-7-6-1-10-9 D 15-16-11-12-13-14 

17 A 6-5-4-3-2-1 C 8-9-11-16-17-7 
B 8-7-6-1-10-9 D 13-12-11-16-15-14 

R’ 

13 

A 2-1-6-5-4-3 
19 B 8-7-6-1-10-9 

C 8-7-17-16-11-9 
D 14-13-12-11-16-15 

20 A 2-1-10-5-4-3 
B 10-5-6-7-8-9 
C 12-11-9-8-14-13 
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Table 2. ZPD and C P  puckering parameters for six-membered 
rings in structures 1-20 

~ 

Ring S 0 $2 U" Q B c p  @I> Ref. 

lh 
2 
3 h  
4 
5 b  
6 
7 
8 h  
9Ah 
9B 
1OA 
IOB 
l l A h  
l l B  

12 
13 
14A 
14B 
15Ab 
15B 
15c  
15D 
16A 
16B" 
17Ab 
17Bh 
17Cb 
17Dh 
18A 
18Bh 
18C 
18D 
19A 
19B 
19C 
19Dh 
2OA 
2OB 

l l C h  

2OCh 

0.97 7.7 
0.82 35.2 
1.13 3 .7  
1 .17  3.7 
0.72 35.6 
0.85 29.7 
0.94 86.5 
0.68 35.2 
1.09 9 .5  
0.83 34.7 
0.92 35.5 
1.20 0.9 '  
1.09 5.7 
1.09 16.7 
1.23 0.9' 
1.13 89.7 
1.18 87.1 
0.75 89.5 
1 . 1 1  89.9 
1.10 90.0 
0.95 89.6 
1.04 89.6 
0.90 89.6 
1.21 63.3 
1.23 10.8 
1.17 0.1' 
1.18 5 . 4  
0.96 86.6 
1.23 0.5' 
1.15  1.7 
1.19 7.9 
0.92 85.2 
1.16 2 .0  
1.19 0.4' 
1.19 4 . 5  
1.12 8 . 2  
1.16 5.4 
1-15 2.4 
0.78 35.1 
0.88 84.1 

3.7 2.3 0.48 15.4 0 .1  40 
26.7 0 .3  0.51 49.7 26.2 41 
4.4 0 .5  0.55 3 .0  6 .8  20 

26.9 0 .1  0.57 4 . 4  50.2 20 
4 .4  0 .4  0.45 51.0 3.8 42 

22.8 1 .3  0.55 44.8 12.7 43 
4.5 2.7 0.81 90.5 1.3 44 

22.6 0 . 3  0.42 50.3 20.8 45 
12.0 0 .6  0.56 17.9 13.6 46 
13.3 0 . 3  0.52 50.2 13.1 46 
16.8 0 . 3  0.55 50.5 14.6 47 
9.1 0.8 0.58 2 .4  248.5 47 

29.7 2.6 0.55 10.0 18.7 48 
3.7 2.5 0.60 30.8 2.2 48 
5 . 0  0.8 0.63 1.2 147.4 48 
0.5 1 . 5  0.98 90.2 359.8 49 
6 . 9  1.0 0.99 87.8 8.4 50 
0 .7  1 .3  0.62 89.9 0.7 51 
0 .7  1 .5  0.91 90.3 0 .7  51 
0 .6  1 .5  0.90 89.9 0.8 51 
0 .6  1 .4  0.82 90.0 0 .7  51 
0 .0  0 . 3  0.91 89.9 0.1 51 
0 .4  1 .4  0.73 89.9 0.3 51 
0.5 9 . 3  1.07 78.7 0.1 52 
1.0 0 .9  0.67 21.3 0 . 6  52 
4.1 0 .6  0.58 3 . 7  3 .6  53 

11.2 0 . 4  0.60 10.6 14.8 53 
0.7 0 .6  0.79 87.6 0.9 53 

26.4 0 . 3  0.62 0.5' 241.8 53 
5 .3  0.2 0.57 4.6 7.5 54 
5 .0  0 . 3  0.61 15.5 6.2 54 
0.5 0.7  0.76 86.8 1.2 54 

27.4 0 .7  0.58 3.9 26.5 54 
0 .7  0 .5  0.60 2 . 9  235.6 55 

19.0 0.1 0.60 10.4 17.4 55 
0 .8  0 .9  0.58 15.7 3 .6  55 

16.0 1.2 0.59 11.1 19.7 55  
21.3 0.9 0.58 4 . 0  40.6 56 
22.9 0 . 9  0.52 50.1 22.2 56 
22.8 0.5 0.68 85.9 23.3 56 

"The accuracy of'the ZPD method war calculated according 10 equation 

The inversion mas used to obtain the Z P D  puckering parameter$ in the 
canonical region. 
' The m a l l  value of the polar angle 0 leads to the great dispersion of the 
phaye angle. 

p. 

close to a boat form, some of them with the flattened 
apex 4, whereas ring 20C adopts nearly a twist-form. 
Hence even this straightforward kind of analysis allows 
one to evaluate the ring conformation. 

Another application of puckering parameters relates 
to the comparison of ring conformations. For example 
rings 17C and 18C (differing in the presence of a methyl 
substituent in 17C) have approximately the same con- 
formation with greater overall flattening in 18C. The 
comparison of boat conformations 12 and 13 shows that 
13 is more twisted (which can be explained by the 
presence of five substituents in the ring). Hence the 
puckering parameters allow one to evaluate the effect of 
substituents on the ring form. 

Among the cycles analysed we shall now consider 
those for which the ZPD and C P  parameters lead to dif- 
ferent conclusions. Let us compare the ZPD and CP 
description of conformations for these rings from the 
stereochemical point of view. For rings 4 and 20A the 
ZPD parameters show that the apex 4 is the most flat- 
tened part of the ring andothe apex 1 is the most 
puckered ( $ 2  = 26.9 and 21 * 3  , respectively). Such con- 
clusions are in complete agreement with the results of 
torsional angle analysis given in Figure 10 with the use 
of the stereochemical criteria discussed above. 32 

However, the C P  parameters for the same atomiz 
numbering are out of the canonical range ($2  = 50.2 
and 40.6" for rings 4 and 20A, respectively) and lead to 
the conclusion that the greatest flattening is at apex 5 
and puckering at apex 2 (for z-coordinates, see Figure 
lo), i.e. the C P  description in these cases is in contradic- 
tion with the angular stereochemical criteria, despite the 
fact that the rings considered have approximately equal 
bond lengths (Clp1-Csp3 in compound 20A). 

One more contradiction between ZPD and C P  
descriptions is observed for the boat form 7. In terms of 
both ZPD parameters ( I 9  = 86.5') and stereochemical 
criteria, apex 4 is more flattened than apex 1, while the 
C P  parameters (0'' = 90.5") lead to the opposite con- 
clusion (see Figure 10). 

It should be mentioned that since for the chair con- 
formation (0=0)  the value of the phase angle $2 is 
indefinite, in the close vicinity of the pole the usual 
standard deviations of the initial x-ray data lead to 
meaningless values of $2 (a5 with the rings 10B, l l C ,  
17A, 17D and 19A) and hence the atomic numbering 
for such rings can be chosen arbitrarily. 

.464 I - 0 . Z I H I  

0 . 2 2 7 %  -0 2 3 9 5  

4 7 2 0  A 

Figure 10. Torsional angles and t-coordinates for rings 4,'" 7'4 and 20AC6 
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Hence the examples considered demonstrate the 
utility of ZPD puckering parameters for the analysis 
and comparison of six-membered ring forms. 

CONCLUSION 

A careful analysis of the C P  method shows that, 
although in many cases it leads to the correct 
stereochemical conclusions, it sometimes fails in the 
description of ring forms. This shortcoming can be 
explained by the dependence of the C P  puckering 
parameters on the linear geometrical characteristics of 
the ring. On the other hand, the ZPD method based on 
the endocyclic torsional angles allows one to charac- 
terize quantitatively conformations and distortions of 
rings in fairly good agreement with criteria accepted in 
stereochemistry. Such conclusions are drawn from 
model calculations simulating the ring distortions and 
from the analysis of 40 six-membered ring forms in 20 
structures. I t  has been shown here that the range of 
variation of the angular puckering parameters can be 
reduced significantly without any approximations or 
restrictions and thus for the case of six-membered rings 
only 1/24th of the puckering sphere surface needs to be 
used. Application of the narrowed region for the 
puckering parameters is of great use for the analysis and 
comparison of ring forms, its utility being evident for 
larger rings which are characterized by more than three 
puckering parameters. 
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